
Run-Time Verification of Coboxes

Frank S. de Boer1,2, Stijn de Gouw1,2, and Peter Y. H. Wong3

1 CWI, Amsterdam, The Netherlands
2 Leiden University, The Netherlands

3 SDL Fredhopper, Amsterdam, The Netherlands

Abstract. Run-time assertion checking is one of the most useful tech-
niques for detecting faults, and can be applied during any program ex-
ecution context, including debugging, testing, and production. In this
paper we show how to model the observable behavior of concurrently
running object groups (coboxes) in SAGA (Software trace Analysis us-
ing Grammars and Attributes) which is a run-time checker that provides
a smooth integration of the specification and the run-time checking of
both data- and protocol-oriented properties of message sequences. We il-
lustrate the effectiveness of our method by an industrial case study from
the eCommerce software company Fredhopper.

1 Introduction

In [18] Java is extended with a concurrency model based on the notion of con-
currently running object groups, so-called coboxes, which provide a powerful
generalization of the concept of active objects. Coboxes can be dynamically cre-
ated and objects within a cobox have only direct access to the fields of the
other objects belonging to the same cobox. Since one of the main requirements
of the design of coboxes is a smooth integration with object-oriented languages
like Java, coboxes themselves do not have an identity, e.g., all communication
between coboxes refer to the objects within coboxes. Communication between
coboxes is based on asynchronous method calls with standard objects as targets.
An asynchronous method call spawns a local thread within the cobox to which
the targeted object belongs. Such a thread consists of the usual stack of internal
method calls. Coboxes support multiple local threads which are executed in an
interleaved manner. The local threads of a cobox are scheduled cooperatively,
along the lines of the Creol modelling language described in [12]. This means,
that at most one thread can be active in a cobox at a time, and that the active
thread has to give up its control explicitly to allow other threads of the same
cobox to become active.

In order to be able to understand and verify the overall behavior of a system
in terms of its concurrently running coboxes suitable abstractions are absolutely
essential. In this paper we first capture by means of a new formal semantics
the relevant observable behavior of a cobox. More specifically, we show that
for pure asynchronous systems of coboxes which only communicate via asyn-
chronous method calls, e.g., no support is included for synchronization on return

2

values by futures [6], simple sequences of input/output messages which only re-
fer to the targeted objects suffice for a compositional semantics. As such these
sequences provide a powerful abstraction of the internal multithreaded flow of
control within a cobox.

The main problem addressed in this paper is the run-time verification of
coboxes as introduced recently in [18]. Run-time assertion checking is one of
the most useful techniques for detecting faults, and can be applied during any
program execution context, including debugging, testing, and production [4].
We provide a new compositional semantics for a specific class of coboxes. This
semantics supports a formal definition of behavioral interfaces in terms of se-
quences of input/output messages and matches the abstraction level of coboxes
in that messages only refer to objects. We show how to use attribute grammars
extended with assertions to specifiy and verify at run-time properties of the
messages sent between coboxes. To this end we extend the run-time assertion
checking tool SAGA described in [7] which smoothly integrates both data- and
protocol-oriented properties of message sequences. We illustrate the effective-
ness of our method by an industrial case study from the eCommerce software
company Fredhopper.

Plan of the Paper In the next section we first introduce an informal description of
the case study which we use to illustrate our modelling and analysis techniques.
Our modelling language and its formal semantics is described in section 3 and
4, respectively. Section 5 introduces the formalism used to describe behavioral
interfaces. Tool-support is discussed in section 6 and a brief discussion of its use
can be found in section 7. We conclude in the last section with related work and
future research.

2 Case Study

The Fredhopper Access Server (FAS) is a distributed concurrent object-oriented
system that provides search and merchandising services to eCommerce compa-
nies. Briefly, FAS provides to its clients structured search capabilities within the
client’s data. Each FAS installation is deployed to a customer according to the
FAS deployment architecture (See Figure 1).

FAS consists of a set of live environments and a single staging environment. A
live environment processes queries from client web applications via web services.
FAS aims at providing a constant query capacity to client-side web applications.
A staging environment is responsible for receiving data updates in XML for-
mat, indexing the XML, and distributing the resulting indices across all live
environments according to the Replication Protocol. The Replication Protocol is
implemented by the Replication System. The Replication System consists of a
SyncServer at the staging environment and one SyncClient for each live envi-
ronment. The SyncServer determines the schedule of replication, as well as its
content, while SyncClient receives data and configuration updates according to
the schedule.

3

Live

Environment

Live

Environment

Data and Config

Updates

Configurations

changes

Staging

Environment

Data

Manager

Internet

...

Client-side

Web App

Client-side

Web App

Client-side

Web App

Data updates Live

Environment... Load

balancer

Fig. 1. An example FAS deployment

Replication Protocol

The SyncServer communicates to SyncClients by creatingWorker objects. Work-
ers serve as the interface to the server-side of the Replication Protocol. On the
other hand, SyncClients schedule and create ClientJob objects to handle com-
munications to the client-side of the Replication Protocol. When transferring
data between the staging and the live environments, it is important that the
data remains immutable. To ensure immutability without interfering the read-
/write access of the staging environment’s underlying file system, the SyncServer
creates a Snapshot object that encapsulates a snapshot of the necessary part of
the staging environment’s file system, and periodically refreshes it against the
file system. This ensures that data remains immutable until it is deemed safe to
modify it. The SyncServer uses a Coordinator object to determine the safe state
in which the Snapshot can be refreshed. Figure 2 shows a UML sequence dia-
gram concerning parts of the replication protocol with the interaction between a
SyncClient, a ClientJob, a Worker, a SyncServer, a Coordinator and a Snapshot.
The figure assumes that SyncClient has already established connection with a
SyncServer and shows how a ClientJob from the SyncClient and a Worker from
a SyncServer are instantiated for interaction. For the purpose of this paper we
consider this part of the Replication Protocol as a replication session. We now
informally describe the interaction between the ClientJob and the Worker:

The ClientJob initially connects to a Worker
(SyncServer.getConnection, ClientJob.acceptConnection); the
ClientJob then requests the next set of replication schedules from
the Worker (Worker.command, ClientJob.sendSchedule); After that
the Worker registers with the ClientJob the data to be replicated
(ClientJob.registerItems, Worker.replyRegisterItems); Should
the ClientJob accept the registration, the Worker proceeds send-
ing to the ClientJob (meta information) of files to be replicated

4

Fig. 2. Replication interaction

(ClientJob.processFile, Worker.replyProcessFile). For each of
the files the ClientJob replies to the Worker indicating which part of
the files need to be replicated, and with this information Worker sends
relevant parts of the files to the ClientJob (ClientJob.sendContent,
Worker.acceptContent).

3 The Modeling Language

The modeling language discussed in this paper is based on the ABS [11] which is
an abstract, executable, object-oriented modeling language with a formal seman-
tics, targeting distributed systems. ABS is designed with a layered architecture,
at the base are functional abstractions around a standard notion of paramet-
ric algebraic data types (ADTs). Next we have an OO-imperative layer similar
to (but much simpler than) Java. ABS generalizes the concurrency model of
Creol [12] from single concurrent objects to concurrent object groups (coboxes).
As in [18] coboxes encapsulate synchronous, multi-threaded, shared state compu-
tation on a single processor. An essential difference to thread-based concurrency
is that task scheduling is cooperative, i.e., switching between tasks of the same
object happens only at specific scheduling points during the execution, which
are explicit in the source code and can be syntactically identified. This allows to
write concurrent programs in a much less error-prone way than in a thread-based
model and makes ABS models suitable for static analysis. Differently from [18]
in our dialect coboxes communicate only via pure asynchronous messages, and

5

Fig. 3. Connecting to Worker and Acquiring Replication Schedules

as such form an actor-based model as initially introduced by [1] and further
developed in [19].

In this subsection we describe the core constructs of our dialect of the ABS
used in this paper in some detail. Specifically, we describe

– algebraic data types and functions;
– interfaces and classes;
– synchronous method calls and objects creation;
– asynchronous method calls and cobox creation;
– cooperative scheduling using await statements.

To illustrate synchronous and asycnhronous communications we look at the im-
plementation of how a ClientJob connects to a Worker and receives the next
set of replication schedules. This part of the protocol is illustrated in the UML
sequence diagram in Figure 3.

Data types and Functions ABS supports algebraic data types (ADT) to model
data in a software system. ADTs abstract away from implementation details
such as hardware environment, file content, or operating system specifics. For
example in the Replication System, the following ADT Content models the file
system of environments.

data Content = File(Int content) | Dir(Map<String,Content>);

ABS supports first-order functional programming with ADT. Functional code is
guaranteed to be free of side effects. One consequence of this is that functional
code may not use object-oriented features. For example, the following function
isFile checks if the given Content value records a file.

def Bool isFile(Content c) = case { File(_) => True; _ => False; };

Interfaces ABS has a nominal type system with interface-based subtyping. In-
terfaces define types for objects. They have a name, and define a set of method
signatures, that is, the names and types of callable methods. The following shows
interface Worker that models a Worker.

6

interface Worker {
Unit execute();
Unit command(Command c);
Unit acceptCoordinator(Coordinator coord);
Unit sendCurrentId(Int id);
Unit replyRegisterItems(Bool register);
Unit acceptItems(Set<Item> items);
Unit acceptEntries(Set<Map<String,Content>> contents); }

Classes ABS also supports class-based, object-oriented programming with stan-
dard imperative constructs. Classes define the implementation of objects. In
contrast to Java, for example, classes do not define a type. Classes can imple-
ment arbitrarily many interfaces. These interfaces define the type of instances
of that class. A class has to implement all methods of all its implementing inter-
faces. Instead of constructors, classes in ABS have class parameters, which are
instance fields. In addition, a class may further define additional instance fields.
The following class WorkerImpl implements Worker:

class WorkerImpl(ClientJob job, SyncServer server, Coordinator coord)
implements Worker {

Maybe<Command> cmd = Just(ListSchedule);
Unit execute() {..}
Unit command(Command c) {..}
Unit acceptCoordinator(Coordinator coord) {..}
Unit sendCurrentId(Int id) {..}
Unit replyRegisterItems(Bool register) {..}
Unit acceptItems(Set<Item> items) {..}
Unit acceptEntries(Set<Map<String,Content>> contents) {..}}

It defines class parameters job of ClientJob and server of SyncServer. Here
ClientJob models a ClientJob and SyncServer models a SyncServer. It further
defines instance fields cmd and coord, where cmd is initialized with some default
value.

Thread-based computation Basic statements describing the flow of control
of a single thread include the usual (synchronous) method invocations, ob-
ject creation, and field and variable reads and assignments. These statements
can be composed by the standard control structures (sequential composition,
conditional and iteration constructs). The following shows the part of class
ClientJobImpl that a ClientJob connecting to a Worker and acquiring the next
schedules:

class ClientJobImpl(SyncServer server) implements ClientJob {
Unit sendSchedules(Set<Schedule> ss) { .. }
Unit executeJob() { .. }
Unit acceptConnection(Worker w) {

7

if (w != null) { .. this.scheduleJob(); }}
Unit scheduleJobs() {

Scheduler sr = new SchedulerImpl(..);
sr.schedule(); }}

The method acceptConnection invokes synchronously the (private) method
scheduleJob, which in turn creates an object of SchedulerImpl and invokes its
method schedule.

Coboxes The concurrency model of ABS is based on the concept of Coboxes. A
typical ABS system consists of multiple, concurrently running coboxes at run-
time. Coboxes can be regarded as autonomous run-time components that are
executed concurrently, share no state and communicate via method calls. A new
object cobox is created by using the new cog expression. It takes as argument
a class name and optional parameters and returns a reference to the initial
object of the new cobox. Communication between coboxes may solely be done
via asynchronous method calls. The difference to the synchronous case is that
an asynchronous call immediately returns to the caller without waiting for the
message to be received and handled by the callee. Asynchronous method calls
are indicated by an exclamation mark (!) instead of a dot. The following expands
the fragment of ClientJobImpl shown earlier to illustrate cobox creation and
asynchronous communications.

class ClientJobImpl(SyncServer server, SyncClient client, Schedule s)
implements ClientJob {

Set<Schedule> schedules = EmptySet;
Unit executeJob() { server!getConnection(this); }
Unit acceptConnection(Worker w) { .. }
Unit sendSchedules(Set<Schedule> ss) { .. }
Unit scheduleJobs() { .. }}

class SyncServerImpl(Coordinator coord) implements SyncServer {
Unit getConnection(ClientJob job) {

Bool shutdown = this.isShutdownRequested();
if (shutdown) {
job!acceptConnection(null);

} else {
Worker w = new cog WorkerImpl(job, this, coord);
job!acceptConnection(w); }}}

The classes SyncServerImpl implements the SyncServer and ClientJobImpl
implements a ClientJob. ClientJobImpl has a class parameter server that
holds the reference to the SyncServer that is assigned to a different cobox.
The method executeJob invokes SyncServer’s method getConnection asyn-
chronously to connect with a Worker. In the implementation of SyncServer, a
new object cobox is created with the WorkerImpl object being the initial object
in that cobox.

8

Cooperative scheduling Each asynchronous method call results in a task in the
cobox of the target object. Tasks are scheduled cooperatively within the scope of
a object cobox. Cooperative scheduling means that switching between tasks of
the same object cobox happens only at specific scheduling points during program
execution and that at no point two tasks in the same cobox are active at the same
time. Using the await statement, one can create a conditional scheduling point,
where the running task is suspended until a Boolean condition over the object
state becomes true. The following shows the implementation of ClientJobImpl
after connecting with a Worker.

class ClientJobImpl(SyncServer server, SyncClient client, Schedule s)
implements ClientJob {

Set<Schedule> schedules = EmptySet;
Unit sendSchedules(Set<Schedule> ss) { schedules = ss; }
Unit acceptConnection(Worker w) {
if (w != null) {

w!command(Schedule(s));
await schedules != EmptySet;
this.scheduleJobs();}}..}

class WorkerImpl(ClientJob job, SyncServer server) implements Worker {
Unit command(Command c) { .. job!sendSchedules(schedules); }}

The method acceptConnection invokes method command on the worker and
suspends using the statement await schedules != EmptySet to wait for the
next set of schedules arrives. The next set of schedules is set by invoking the
method sendSchedules on the ClientJob.

4 Semantics

In this section we describe the formal semantics of systems of coboxes com-
positionally in terms of its object coboxes. The behavior of a cobox itself is
described compositionally in terms of its threads. In this section we abstract
from the functional part of the modeling language. We further abstract from
variable declarations and typing information, and simply assume given a set of
variables x, y, We distinguish between simple and instance variables. The
set of simple variables is assumed to include the special variable “this”. Simple
variables are used as formal parameters of method definitions.

Throughout this section we assume a given program which specifies a set
of classes and a (single) inheritance relation. We start with the following basic
semantic notions. For each class C we assume given a set of OC , with typical
element o, of (abstract) objects which belong to class C at run-time. A heap h is
formally given as a set of (uniquely) labelled object states o : s, where s assigns
values to the instance variables of the object o. We denote s(x), for o : s ∈ h, by
h(o.x). By sinit we denote the object state which results from the initialization of
the instance variables of a newly created object. Further, by h[o.x = v] we denote

9

the heap update resulting from the assignment of the value v to the instance
variable x of the object o. Next we introduce a thread configuration as a pair
〈t, h〉 consisting of a thread t. and heap h. A thread itself is a stack of closures
of the form (S, τ), where S is a statement and τ is a local environment which
assigns values to simple variables. By τ [x = v] we denote the update of the local
environment τ resulting from the assignment of the value v to the variable x.
We denote by V (e)(τ, h) the value of a side-effect free expression e in the local
environment τ and global heap h. In particular we have that V (x)(s, h) = s(x),
for a simple variable x, and V (x)(τ, h) = h(τ(this).x), for an instance variable
x.

Thread Semantics A transition

〈t, h〉 −→ 〈t′, h′〉

between thread configurations 〈t, h〉 and 〈t′, h′〉 indicates

– the execution of an assignment x = e or
– the evaluation of a boolean condition b of an if-then-else or while statement,
– or the execution of a synchronous call.

A labelled transition
〈t, h〉 l−→ 〈t′, h′〉

indicates for

l = await: the successfull execution of an await statement,
l = o!m(v̄): an asynchronous call of the method m of the object o with actual

parameters v̄.

In the following structural operational semantics for the execution of single
threads (we omit the transitions for sequential composition, if-then-else and
while statement since they are standard) (S, s) · t denotes the result of push-
ing the closure (S, s) unto the stack t.

Assignment simple variables

〈(x = e;S, τ) · t, h〉 −→ 〈(S, τ ′]) · t, h〉

where τ ′ = τ [x = V (e)(τ, h)].

Assignment instance variables

〈(x = e;S, τ) · t, h〉 −→ 〈(S, τ) · t, h′]〉

where h′ = h[τ(this).x = V (e)(τ, h)].

Await
〈(await b;S, τ) · t, h〉 await−→ 〈(S, τ) · t, h〉

10

where V (b)(τ, h) = true.

Asynchronous method call

〈(x!m(ē);S, τ) · t, h〉 o!m(v̄)−→ 〈(S, τ) · t, h〉

where o = V (x)(s, h), ē = e1, . . . , en, v̄ = v1, . . . , vn, and vi = V (ei)(s, h), for
i = 1, . . . , n.

Synchronous method call

〈(y = x.m(ē);S, τ) · t, h〉 −→ 〈(S′, τ ′) · (y = r;S, τ) · t, h〉

where, assuming that V (x)(s, h) ∈ OC , m(x̄){S′} is the corresponding method
definition in class C. Further, τ ′(this) = V (x)(τ, h) and, for i = 1, . . . , n, τ ′(xi) =
V (ei)(τ, h), (ē = e1, . . . , en and x̄ = x1, . . . , xn,) We implicitly assume here that
τ ′ initializes the local variables of m, i.e., those simple variables which are not
among the formal parameters x̄. Upon return the fresh simple variable r (which
is assumed not to appear in the given program) will store the return value (see
the transition below for returning a value).

Class instantiation

〈(y = new C(ē);S, τ) · t, h〉 −→ 〈(y = r.C(ē);S, τ ′) · t, h ∪ {o′ : sinit}〉

where τ ′ = τ [r = o′], o′ ∈ OC is a fresh object identity, where C is the type of
the variable y. The fresh variable r is used to store temporarily the identity of
the new object. We implicitly assume that the constructor method returns the
identity of the newly created object (by the statement "return this").

Cobox instantiation

〈(y = new cog C(ē);S, τ) · t, h〉 −→ 〈(y = r; y!C(ē);S, τ ′) · t, h〉

where τ ′ = τ [r = o′], o′ ∈ OC is a fresh object identity, (C is the type of the
variable y). As above, the fresh variable r is used to store temporarily the identity
of the new object (here it allows to circumvent a case distinction on whether y
is a simple or an instance variable). Note that the main difference with class
instantiation is that the newly created object is not added to the heap h and
the constructor method is called asynchronously.

In contrast to [11] and [18] we allow for very flexible scheduling policies (no
assumptions are made about scheduling policies at all, even for constructors,
besides the fact that await statements are respected), it is possible that the
constructor method is executed at a later stage than a normal method called on
the newly created object. If this is not desired, the user can synchronize explicitly
using await.

11

Return

〈(return e;S, τ) · (S′, τ ′) · t, h〉 −→ 〈(S′, τ ′[r = v]) · t, h〉

where v = V (e)(τ, h). The fresh variable r here is used to store temporarily the
return value.

In the above transitions for the creation of a class instance or a new cobox
we assume a thread-local mechanism for the selection of a fresh object identity
which avoids name clashes between the activated threads, the technical details
of which are straightforward and therefore ommitted.

Semantics of coboxes A cobox is a pair 〈T, h〉 consisting of a set T of threads
and a heap h. An object o belongs to a cobox 〈T, h〉 if and only if it has a state
in h, that is, o : s ∈ h, for some object state s.

Internal computation step
An unlabelled computation step of a thread is extended to a corresponding
transition of the cobox by the following rule:

〈t, h〉 −→ 〈t′, h′〉
〈{t} ∪ T, h〉 −→ 〈{t′} ∪ T, h′〉

External call
A computation step labelled by an asynchronous method call is extended to a
corresponding transition of the cobox by the following rule:

〈t, h〉 o!m(v̄)−→ 〈t′, h′〉

〈{t} ∪ T, h〉 o!m(v̄)−→ 〈{t′} ∪ T, h′〉

Synchronization
The execution of an await statement by a thread within a given cobox is formally
captured by the rule

〈t, h〉 await−→ 〈t′, h′〉
〈{t} ∪ T, h〉 −→ 〈{t′} ∪ T, h′〉

provided all threads in T executing an await statement, that is, the top of each
thread in T consists of a closure of the form (await b;S, τ) (we implicitly as-
sume that terminated threads are removed). Note that thus the await statement
enforces a barrier synchronization of all the threads of a cobox. This synchro-
nization ensures that at most one thread in a cobox is executing.

Input-enabledness
We further have the following transition which describes the reception of an
asynchronous method call to an object o which belongs to the cobox 〈T, h〉:

〈T, h〉 o?m(v̄)−→ 〈T ∪ {t}, h〉

12

where, , assuming that o ∈ OC , m(x̄){S} is the corresponding method definition
in class C. Further, t consists of the closure 〈await true;S, τ〉, and τ assigns
the actual parameters v̄ to the formal parameters x̄ of m (as above, the object
identity o is assigned to the implicit formal parameter “this”) and initializes all
local variables of m.

The added await statement enforces synchronization between the other threads.
Since coboxes are input-enabled this transition thus models an assumption about
the environment. This assumption is validated in the context of coboxes as de-
scribed next.

Semantics of systems of coboxes Finally, a system configuration is simply a set
G of coboxes. For technical convenience we assume that all system configura-
tions contain an infinite set of latent coboxes 〈∅, {o : sinit}〉 which have not yet
been activated. The fresh object generated by the creation of a new cobox, as
described above in the thread semantics (transition 4), at this level is assumed
to correspond to a latent cobox.

Interleaving
An internal computation step of a cobox is extended to a corresponding transi-
tion of the global system as follows.

g −→ g′

{g} ∪G −→ {g′} ∪G

Message passing
Communication between two coboxes is formalized by

g1
o?m(v̄)−→ g′1 g2

o!m(v̄)−→ g′2
{g1, g2} ∪G −→ {g′1, g′2} ∪G

Here it is worthwhile to observe that for an asynchronous call o!m(v̄) to an object
o belonging to the same cobox there does not exist a matching reception o?m(v̄)
by a different cobox because coboxes have no shared objects.

Trace Semantics A trace is a finite sequence of input and output messages, e.g.,
o?m(v̄) and o!m(v̄), respectively. For each coboxes g we define its trace semantics
T (g) by

{〈θ, g′〉 | g θ−→ g′}

where θ−→ denotes the reflexive, transitive closure of the above transition relation
between coboxes, collecting the input/output messages. Note that the trace θ
by which we can obtain from g a cobox g′ does not provide information about
object creation or information about which objects belong to the same cobox.
In fact, information about which objects have been created can be inferred from
the trace θ. Further, in general a cobox does not “know” which objects belong
to the same cobox.

13

The following compositionality theorem is based on a notion of compatible
traces which roughly requires for every input message a corresponding output
message, and vice versa. We define this notion formally in terms of the following
rewrite rule for sets of traces

{o?m(v̄) · θ, o!m(v̄) · θ′} ∪Θ ⇒ {θ, θ′} ∪Θ

This rule identifies two traces in the given set which have two matching initial
messages which are removed from these traces in the resulting set. Note that this
identification is non-deterministic, i.e., for a given trace there may be several
traces with a matching initial message. A set of traces Θ is compatible, denoted
by Compat(Θ), if we can derive the singleton set {ε} (ε denotes the empty trace).
Formally, Compat(Θ) if and only if Θ ⇒∗ {ε}, where ⇒∗ denotes the reflexive,
transitive closure of ⇒.

Theorem 1. Let →∗ denote the reflexive, transitive closure of the above tran-
sition relation between system configurations. We have

G −→∗ G′

if and only if G = {gi | i ∈ I} and G′ = {g′i | i ∈ I}, for some index set I such
that for every i ∈ I there exists 〈θi, g′i〉 ∈ T (gi), with Compat({θi | i ∈ I}).

This theorem states that the overall system behavior can be described in
terms of the above trace semantics of the individual coboxes. This means that
for compositionality no further information is required. Next we show in the
following section how to specify properties of the externally observable behavior
of a cobox, as defined by its traces of input/output messages.

5 Behavioral Interfaces for Coboxes

In this section we introduce attribute grammars extended with assertions to
specify and verify properties of the trace semantics as defined in the previous
section. In contrast to classes or interfaces, coboxes are run-time entities which
do not have a single fixed interface4. Below we first discuss how we can still refer
statically, in the program text, to these run-time entities by means of so-called
communication views.

5.1 Communication Views

To be able to refer to cobox in syntactical constructs (such as specifications), we
introduce the following (optional) annotation of cobox instantiations:

S ::= y = new cog [Name] C(ē)
4 We consider interfaces here to be a list of all signatures of the methods supported
by some object in the cobox

14

The semantics of the language remain unchanged. Note that the same name can
be shared among several coboxes (i.e. is in general not unique) since different
cobox creation statements can specify the same name.

Coboxes do not have a fixed interface, as the methods which can be invoked
on an object in a cobox (and consequently appear in traces) are not fixed stat-
ically. In particular, during execution objects of any type can be added to a
cobox, which clearly affects the possible traces of the cobox. Additionally, for
practical reasons it is often convenient to focus on a particular subset of meth-
ods, leaving out methods irrelevant for specification purposes. This is especially
useful for incomplete specifications. To solve both these problems, we introduce
communication views. A communication view can be thought of as an interface
for a named cobox. Figure 4 shows an example communication view associated
to all coboxes named WorkerGroup. Formally a communication view is a par-

view WorkerView grammar Worker.g specifies WorkerGroup {
send Coordinator.startReplication(Worker w) st,
send ClientJob.registerItems(Worker w, Int id) pr,
receive Worker.sendCurrendId(Int id) id,
receive Worker.replyRegisterItems(Bool reg) ar,
receive Worker.acceptItems(Set<Item> items) is,
receive Worker.acceptEntries(Set<Map<String, Content>> contents) es

}

Fig. 4. Communication View

tial mapping from messages to abstract event names. A communication view
thus simply introduces names tailored for specification purposes (see the next
subsection about grammars for more details on how this name is used). Par-
tiality allows the user to select only those asynchronous methods relevant for
specification purposes. Any method not listed in the view will be irrelevant in
the specification of WorkerGroups. The send keyword selects calls from objects
in the WorkerGroup to methods of objects in another cobox, and corresponds
to transitions labelled by o!m(v̄) in the operational semantics. In other words:
methods required by an object in the WorkerGroup. Conversely, the keyword
receive selects calls from another cobox to an object in a WorkerGroup, which
corresponds to transitions labelled by o?m(v̄) in the semantics. It is possible that
methods listed in the view actually can never be called in practice (and therefore
won’t appear in the local trace of a cobox). In the above view, this happens if
in a WorkerGroup there is no object of the class Worker.

5.2 Grammars

In this subsection we describe how properties of the set of allowed traces of a
cobox can be defined specified in a convenient, high-level and declarative manner.
We illustrate our approach by partially specifying the behavior depicted by the
UML sequence diagram in Figure 2. Informally the property we focus on is:

15

The Worker first notifies the Coordinator its intention to commence a
replication session, the Worker would then receive the last transaction
id identifying the version of the data to be replicated, the Worker sends
this id to the ClientJob to see if the client is required to update its data
up to the specified version. The Worker then expects an answer. Only
if the answer is positive can the Worker retrieves replication items from
the snapshot, moreover, the number of files sets to be replicated to the
ClientJob must correspond to the number of replication items retrieved.

Grammars provide a convenient way to define the protocol behavior of the
allowed traces. The terminals of the grammar are the message names given
in a communication view. The formalization of the above property uses the
communication view depicted in Figure 4. The productions of the grammar
underlying the attribute grammar in Figure 5 specify the legal orderings of these
messages named in the view. For example, the productions

S ::= ε | st T
T ::= ε | id U

specify that the message ‘id’ is preceded by the message ‘st’.
While grammars provide a convenient way to specify the protocol structure of
the valid traces, they do not take data such as parameters and return values of
method calls and returns into account. Thus the question arises how to specify
the data-flow of valid traces. To that end, we extend the grammar with attributes
and assertions over these attributes. Each terminal symbol has built-in attributes
corresponding with the observables of the trace semantics defined in the previous
section. The built-in attributes consist of the parameter names for referring to the
object identities of the actual parameters, and callee for referencing the identity
of the callee. Non-terminals have user-defined attributes to define data properties
of sequences of terminals. In each production, the value of the attributes of the
non-terminals appearing on the right-hand side of the production is defined.5
For example, in the following production, the attribute ‘w’ for the non-terminal
‘T’ is defined.

S ::= ε | st T (T.w = st.w;)

Attribute definitions are surrounded by ‘(’ and ‘)’. However the attributes them-
selves do not alter the language generated by the attribute grammar, they only
define properties of data-flow of the trace. We extend the attribute grammar
with assertions to specify properties of attributes. For example, the assertion in
the second production of

T ::= ε | id U (U.w = T.w; U.i = id.id;)
U ::= ε | pr {assert U.w == pr.w && U.i == pr.id;} V

expresses that the ‘id’ passed as a parameter to the method ‘registerItems’ (rep-
resented in the grammar by the terminal pr.id;) must be the same as the
5 In the literature, such attributes are called inherited attributes.

16

one previously passed into ‘sendCurrentId’ (terminal id.id). Assertions are sur-
rounded by ‘{’ and ‘}’ to distinguish them visually from attribute definitions.

The full attribute grammar Figure 5 formalizes the informal property stated
in the beginning of this subsection. The grammar specifies that for each Worker
object, in its own object cobox, the Coordinator must be notified of the start
of the replication by invoking its method startReplication (st). Only then
can the Worker receive (from an unspecified cobox) the identifier of the current
version of the data to be replicated (id). Next the Worker invokes the method
registerItems on the corresponding ClientJob about this version of the data
(pr). The grammar here asserts that the identifier is indeed the same as that re-
ceived via the method call sendCurrendId. The Worker then expects to receive
a method call replyRegisterItems indicating if the replication should proceed,
the Worker then can recieve method call acceptItems for the data items to be
replicated. The grammar here asserts that this can only happen if the previ-
ous call indicated the replication should proceed. The Worker then can receive
method call acceptEntries for the set of Directories, each identified by a data
item. Since each data item refers to a directory, the grammar here asserts the
number of items is the same as the number of directories.

S ::= ε | st T (T.w = st.w;)
T ::= ε | id U (U.w = T.w; U.i = id.id;)
U ::= ε | pr {assert U.w == pr.w && U.i == pr.id;} V
V ::= ε | ar W (W.b = ar.reg;)
W ::= ε | is {assert W.b;} X (X.s = size(is.items);)
X ::= ε | es {assert X.s == size(es.contents);}

Fig. 5. Attribute Grammars

view ScheduleView grammar Schedule.g specifies WorkerGroup {
receive Worker.command(Command c) cm,
send ClientJob.sendSchedules(Set<Schedule> ss) sn,
send SyncServer.requestListSchedules(Worker w) lt,
send SyncServer.requestSchedule(Worker w, String name) gt,
send Coordinator.requestStartReplication(Worker w) st

}

Fig. 6. Communication View for Scheduling

To further illustrate the above concepts, we consider an additional behav-
ioral interface for the WorkerGroup cobox. To allow users to make changes the
replication schedules during the run-time of FAS, every ClientJob would request
the next set of replication schedules and send them to SyncClient for schedul-

17

S ::= ε | cm T (T.c = cm.c;)
T ::= ε | gt {assert T.c != ListSchedule &&

gt.n == name(T.c);} U (U.c = T.c;)
| lt {assert T.c == ListSchedule;} U (U.c = T.c;)

U ::= ε | sn {assert sn.ss != EmptySet;} V (V .c = U.c;)
V ::= ε | st {assert V .c != ListSchedule;}

Fig. 7. Attribute Grammar for Scheduling

ing. Here is an informal description of the property, where Figure 6 presents the
communication view capturing the relevant messages and Figure 7 presents the
grammar that formalizes the property:

A ClientJob may request for either all replication schedules or a single
schedule. The ClientJob does this by sending a command to the Worker
(cm). If the command is of the value ListSchedule, the Worker is to
acquire all schedules from the SyncServer (lt) and return them to the
ClientJob (sn). Otherwise, the Worker is to acquire only the specified
schedule (gt) and return it to the ClientJob (sn). If the ClientJob asks
for all schedules, it must not proceed further with the replication session
and terminate (st).

In summary, communication views provide an interface of a named cobox.
The behavior of such an interface is specified by means of an attribute grammar
extended with assertions. This grammar represents the legal traces of the named
cobox as words of the language generated by the grammar, which gives rise to a
natural notion of the satisfaction relation between programs and specifications.
Properties of the control-flow and data-flow are integrated in a single formalism:
the grammar productions specify the valid orderings of the messages (the control-
flow of the valid traces), whereas assertions specify the data-flow.

We conclude this section with the semantic definition of a program extended
with communication views and attribute grammars. To this end, we assume for
any set {gi | i ∈ I} of coboxes of a program annotated with cobox names that
the communication view and corresponding attribute grammar of a cobox gi is
given by Vi and Ai, respectively. Note that this requires that we can identify
the name of a group at run-time (the corresponding extension of the semantics
is straightforward and therefore omitted). Further, for any group g we denote
by Trace(g) the set of traces of T (g) (see the Trace Semantics paragraph di-
rectly above Theorem 1 for a definition of T (g)). For any attribute grammar
we denote by Trace(A) the set of traces generated by the grammar. Finally, by
θ ↓V we denote the projection of the trace θ unto the messages specified by the
communication view V .

Definition 1. Let P be a program annotated with cobox names and S be a spec-
ification consisting of a communication view and corresponding attribute gram-
mar for each named cobox. Then P satisfies S if and only if for all system config-

18

urations G = {gi | i ∈ I} of P and sets of traces Θ = {θi | θi ∈ Trace(gi), i ∈ I}
such that Compat(Θ) we have θi ↓Vi

∈ Trace(Ai), for i ∈ I.

6 Implementation

In this section we discuss the architecture of our run-time checker SAGA, cru-
cial design decisions and its performance. SAGA is implemented as a run-time
checker for ABS models. ABS is basically an extension of the modeling language
considered in this paper. It is tool-supported by various analysis tools [21] and au-
tomated code generation has been implemented to various lower-level languages
including Java, Maude and Scala. SAGA tests whether an actual execution of
a given ABS model satisfies its specification given by attribute grammars, and
stops the running program in case of a violation to prevent unsafe behavior. It is
implemented as a meta-program in Rascal [13]. Rascal is a meta-programming
language featuring powerful techniques for parsing and source code analysis,
transformation and generation.

Design The design of SAGA was guided by several requirements.

1. All back-ends (even future ones) which generate code from ABS models to
lower-level target languages should be supported, without having to update
SAGA when any of the back-ends is updated (for example, to generate more
efficient code). Consequently we need a parser-generator which generates
ABS code, and therefore cannot use existing parser generators.

2. The overhead induced by SAGA must be kept to a minimum. In particular,
whenever the trace of a cobox is updated with a new message, SAGA should
be able to decide in constant time whether the new trace still satisfies the
specification (the attribute grammar). This is determined by parsing the
trace (then considered as a sequence of tokens) in a parser for the attribute
grammar.

3. Because of the intrinsic complexity of developing efficient and user-friendly
parser generators, we require that the implementation of the parser-generator
should be decoupled from the rest of the implementation of SAGA.

These requirements are far from trivial to satisfy. For example JML, a state-
of-the-art specification language for Java, has no stable version of the run-time
checker which supports all back-ends (and future ones) for Java, violating the
first requirement. This is due to the fact that the JML run-time checker was
designed as an extension of a proprietary Java compiler. Other tools for run-
time verification such as MOP and LARVA satisfy the requirement to a certain
extent. Their implementation is based on AspectJ, a compiler which extends
Java with aspect-oriented programming. AspectJ can transform Java programs
in bytecode form. Hence all back-ends which generate bytecode compatible with
AspectJ are also supported by MOP and LARVA. This includes most, though
not all, versions of the standard Sun Java compiler. However aspect-oriented
programming is currently not supported by the ABS. We choose an approach

19

based on pre-processing. Specifications (consisting of a communication view and
attribute grammar) are not added to the formal syntax of the programming
language, they are put in separate files. This avoids creating multiple branches
of the ABS language. In JML, specifications are added to the actual source, but
in comments (so they are not part of the "logic" of the program). In MOP and
LARVA, specifications are also separated from the programming language.

The input of SAGA consists of three ingredients: a communication view, an
attribute grammar extended with assertions and an ABS model. The output is an
ordinary ABS model which behaves the same as the input program, except that it
throws an assertion failure when the current execution violates the specification.
Since the resulting ABS model is an ordinary ABS model, all analysis tools [21]
(including a debugging environment with visualization and a state-of-the-art cost
analyzer) and back-ends which exist for the ABS can be used on it directly. The
third requirement (a separation of concerns between the parser-generator and
the rest of the implementation) has lead to a component-based design (Figure 8)
consisting of a parser-generator component and source-code weaving component.
We discuss these components, and the second requirement on performance of the
generated parser, in more detail below.

Fig. 8. SAGA tool architecture

Parser generator component The parser-generator component processes only the
attribute grammar and generates a parser for it, with ABS as the target lan-
guage. Parsers for attribute grammars in general take a stream of terminals as
input, and output a parse tree according to the grammar productions (where
non-terminal nodes are annotated with their attribute values). In our case, the
attribute grammars also contains assertions, and the generated parser addition-
ally checks that all assertions in the grammar are true.

Due to the power of general context-free grammars extended with attributes
(as introduced in the seminal paper [14] by Knuth), they can be quite expen-

20

sive to parse. In particular, the currently best known algorithm [20] to parse
context-free grammars has a time complexity of O(n2.38) (with very huge con-
stants), where n is the number of terminals to parse. The current best practical
algorithms (with reasonably sized constants) require cubic time. Lee [15] showed
that multiplication of two square Boolean matrices can be reduced to parsing
context-free grammars. This gives an easy quadratic lower-bound on the time
complexity of parsing (since clearly at least all elements of the two matrices must
be inspected to compute the resulting product, and the two matrices have 2n2

entries in total). Whether this quadratic lower-bound is sharp is currently not
known.

In our case, whenever a new message (asynchronous call) is added to the
trace, all parse trees of all prefixes have been computed previously. The ques-
tion arises how efficient the new parse trees can be computed by exploiting the
parse trees of the prefixes. Unfortunately, for general context-free grammars, this
cannot be done in constant time (violating the second requirement on perfor-
mance). For if this was possible in constant time, parsing the full trace results
in a parser which works in linear time (n terminals which all take a constant
amount of time), which is lower than the theoretical quadratic lower-bound. We
therefore restrict to deterministic regular attribute grammars with only inher-
ited attributes. All grammars used in the case study have this form and parsing
the new trace in such grammars can be done in constant time, since they can
be translated to a finite automaton with conditions (assertions) and attribute
updates as actions to execute on transitions. Parsing the new message consists of
taking a single step in this automaton. Moreover for such grammars, the space
complexity is also very low: it is not necessary to store the entire trace, only the
attribute values of the previous trace must be stored.

Source-code weaving component The weaving component processes the commu-
nication view and the given ABS model, and outputs a new ABS model in which
each call to a method appearing in the view is transformed. The transformation
checks whether the method call which is about to be executed is allowed by
the attribute grammar, and if this is not the case, prevents unsafe behavior by
throwing an assertion failure. This transformation is invasive, in the sense that
it cannot be done only locally in the body of those methods actually appearing
in the view, but instead it has to be done at all call-sites (in client code). To
see this, suppose that the transformation was done locally, say in the beginning
of the method body. Due to concurrency and scheduling policies, other methods
which were called at a later time could have been scheduled earlier. In such a
scenario, these other methods are checked earlier than the order in which they
are actually called by a client, which violates the decision (see also the previous
section) to treat scheduling policies orthogonally.

The transformation is done in two steps. First, all calls to methods that
occur in a communication view are isolated using pattern matching in the meta-
program. We created a Rascal ABS grammar for that purpose. Second, all call-
statements are preceded by code which checks that the current object is part of
a named cobox (note that this check really has to be done at run-time due to the

21

Metrics Java ABS
Nr. of lines of code 6400 3300
Nr. of classes 44 40
Nr. of interfaces 2 43
Nr. of functions N/A 80
Nr. of data types N/A 17

Table 1. Metrics of Java and ABS of the Replication System

Fig. 9. Protocol violation

dynamic nature of coboxes). If this is the case, the trace is updated by taking a
step in the finite automaton where additionally the assertion is checked. If there
is no transition for the message from the current state, we throw an assertion
error. Intuitively such an error corresponds to a protocol violation. There is one
subtle point about updating the trace. If no assumptions are made about the
scheduling of received messages, only updates to the trace of the calling cobox
(i.e. ‘send’ messages in the view) can be guaranteed to be executed directly
before the actual call happens. We solve this problem by using a single global
trace in a dedicated cobox. This global trace is updated (using an asynchronous
call) at the call site. To ensure that these updates are applied in the right order,
we additionally pass in an integer which indicates the number of messages sent
from the cobox, and enforce a proper scheduling using awaits based on that
number.

7 Experience Report

The ABS model of the Replication System consided in the case study is a model
of a part of the Fredhopper Access Server (FAS) whose current in production
Java implementation has over 150,000 lines of code, of which over 6,000 lines
constitute the Replication System considered here. Due to its concurrent behav-
ior and the implementation of numerous features, the Replication System is one
of the most complex parts of FAS.

Table 1 shows metrics for the actual implementation and the ABS model
of the Replication System. Note that the ABS model includes model-level in-
formation such as deployment components and simulation of external inputs in
the ABS model, which the Java implementation lacks. The ABS model includes

22

also scheduling information, as well as models of file systems and data bases,
while the Java implementation leverages libraries and its API. This accounts for
>1,000 lines of ABS code.

While running SAGA over the ABS model of the Replication System us-
ing the ABS Java backend, we have encountered an assertion error. The asser-
tion error is due to the protocol violation shown in Figure 9. The sequence of
messages depicted by the UML sequence diagram violates the grammar Sched-
uler.g shown in Figure 7. Specifically, the cobox for the Worker object sends the
method call SyncServer.requestListSchedules before receiving the method
call Worker.command. The following shows part of the implementation of WorkerImpl
that is responsible for this violation.

class WorkerImpl(ClientJob job, SyncServer server, Coordinator coord)
implements Worker {

Maybe<Command> cmd = Just(ListSchedule);
Unit execute() {
if (cmd == Just(ListSchedule)) {

server!requestListSchedules(this);
} else {

server!requestSchedule(this, name(cmd))); }}
Unit command(Command c) { this.cmd == Just(cmd); }}

The reason for the violation is that when the cobox receives
the method call Worker.execute the above implementation does not
wait receiving the method call Worker.command before sending the
method call SyncServer.requestListSchedules. The reason this is pos-
sible is because the instance field cmd is initialized incorrectly with
the value Just(ListSchedule) that would allow the conditional state-
ment inside the method acceptCoordinator to invoke the method
SyncServer.requestListSchedules. The following shows the correct version
of this part of the implementation.

class WorkerImpl(ClientJob job, SyncServer server, Coordinator coord)
implements Worker {

Maybe<Command> cmd = Nothing;
Unit execute() {
this.coord = coord;
await cmd != Nothing;
if (cmd == Just(ListSchedule)) {

server!requestListSchedules(this);
} else {

server!requestSchedule(this, name(cmd))); }}
Unit command(Command c) { this.cmd == Just(cmd); }}

In the correct implementation, the field cmd is initialized with the value Nothing
and an await statement is used to ensure cmd is set by receiving the method call
Worker.command() before proceeding further.

23

8 Conclusion

We showed that for pure asynchronous systems of coboxes which only communi-
cate via asynchronous method calls, simple sequences of input/output messages
which only refer to the targeted objects suffice for a compositional semantics.
We further showed using an industrial case study how both protocol-oriented
properties and data-oriented properties of such sequences can be specified con-
veniently in a single formalism of attribute grammars extended with assertions.
Finally we developed and discussed the corresponding tool support provided by
SAGA. SAGA can be obtained from http://www.cwi.nl/~cdegouw.

Related Work In [10] a survey is presented of behavioral interface specification
languages and their use in static analysis of correctness of object-oriented pro-
grams. In particular, there exists an extensive literature on the static analysis
of systems of concurrent objects. For example, in [9] a proof system for partial
correctness reasoning about concurrent objects is established based on traces
and class invariants. We present the first specification language for the analysis
of concurrent groups of objects (coboxes), and implemented an efficient run-time
checker. There exist many interesting approaches to run-time verification, e.g.,
monitoring message sequences, but all of these work in the context of Java and
its low-level concurrency model based on multithreading.

For example, Martin et al. [16] introduce the Program Query Language
(PQL) for detecting errors in sequences of communication events. PQL was up-
dated last in 2006 and does not support user-defined properties of data. Allan et
al. [2] develop an extension of AspectJ with a trace-based language feature called
Tracematches that enables the programmer to trigger the execution of extra code
by specifying a regular pattern of events in a computation trace. The underly-
ing pattern matching involves a binding of values to free variables. Nobakht et
al. [17] monitors calls and returns with the same Java Debugger Architecture
that we have also evaluated in the implementation section. Their specification
language is equivalent in expressive power to regular expressions. Because the
grammar for the specifications is fixed, the user can not specify a convenient
structure themselves, and data is not considered. Chen et al. [3] present Java-
MOP, a run-time monitoring tool based on aspect-oriented programming which
uses context-free grammars to describe properties of the control flow of traces.
However properties on the data-flow are predefined built-in functions (basically
AspectJ functions such as a ’target’ to bind the callee and ’this’ to bind the
caller). LARVA is developed by Colombo et al. [5]. The specification language
has an imperative flavour: users define a finite state machine to define the al-
lowed traces (i.e. one has to ’implement’ a regular expression themselves). Data
properties are supported in a limited manner, by enriching the state machine
with conditions on method parameters or return values (not on sequences of
them).

DeLine and Fähndrich [8] propose a statically checkable typestate system for
object-oriented programs. Typestate specifications of protocols correspond to
finite state machines, data and assertions are not considered in their approach.

24

Future Work For practical reasons, good error reporting is essential. Note how-
ever that since error reporting, for example in case of assertion failures, prints to
the screen (and consequently relies on low-level I/O details), it is not back-end
independent. Using the ABS foreign language interface, it is possible to execute
native Java or Maude code which implements the error reporting. As a relatively
simple first step, we could for instance use SDEdit, a sequence diagram editor
already used in the ABS, to visualize traces violating the grammars. Since traces
tend to be large, finding relevant abstractions of the trace is crucial here.

Currently SAGA supports determinstic regular grammars with just inherited
attributes. Such grammars can be incrementally parsed. This immediately sug-
gest another future line of work: is there a larger class of grammars which can
be parsed incrementally?

As the final direction of future work we would like to investigate ways to
control the complexity of extensions of the modeling language including futures
and promises (in the Cobox concurrency model).

References

1. G. Agha. Actors: A model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA, 1990.

2. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to aspectj. In OOPSLA, pages 345–364, 2005.

3. F. Chen and G. Rosu. Mop: an efficient and generic runtime verification framework.
In OOPSLA, pages 569–588, 2007.

4. L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime assertion
checking in software development. ACM SIGSOFT Software Engineering Notes,
31(3):25–37, 2006.

5. C. Colombo, G. J. Pace, and G. Schneider. Larva — safer monitoring of real-time
java programs (tool paper). In SEFM, pages 33–37, 2009.

6. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
ESOP, pages 316–330, 2007.

7. F. S. de Boer, S. de Gouw, E. B. Johnsen, and P. Y. H. Wong. Run-time checking of
data- and protocol-oriented properties of java programs: An industrial case study.
In SAC, to appear, 2013.

8. R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP, pages 465–490,
2004.

9. C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. J. Log. Algebr.
Program., 81(3):227–256, 2012.

10. J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson. Be-
havioral interface specification languages. ACM Comput. Surv., 44(3):16:1–16:58,
June 2012.

11. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In B. Aichernig, F. S. de Boer, and
M. M. Bonsangue, editors, Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010), volume 6957 of LNCS, pages 142–164.
Springer-Verlag, 2011.

25

12. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and System Modeling, 6(1):35–58, Mar. 2007.

13. P. Klint, T. van der Storm, and J. Vinju. Rascal: a domain specific language
for source code analysis and manipulation. In A. Walenstein and S. Schupp, ed-
itors, Proceedings of the IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2009), pages 168–177, 2009.

14. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

15. L. Lee. Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM, 49(1):1–15, 2002.

16. M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security
flaws using pql: a program query language. In OOPLSLA, 2005.

17. B. Nobakht, M. M. Bonsangue, F. S. de Boer, and S. de Gouw. Monitoring method
call sequences using annotations. In FACS, pages 53–70, 2010.

18. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In European Conference on Object-Oriented Programming
(ECOOP’10), volume 6183 of Lecture Notes in Computer Science, pages 275–299.
Springer-Verlag, June 2010.

19. M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer. Modeling and verification
of reactive systems using rebeca. Fundam. Inform., 63(4):385–410, 2004.

20. L. G. Valiant. General context-free recognition in less than cubic time. J. Comput.
Syst. Sci., 10(2):308–315, 1975.

21. P. Y. H. Wong, E. Albert, R. Muschevici, J. Proença, J. Schäfer, and R. Schlatte.
The abs tool suite: modelling, executing and analysing distributed adaptable
object-oriented systems. STTT, 14(5):567–588, 2012.

